Regular Expressions

Regular Expressions

- Notation to specify a language
 - Declarative
 - Sort of like a programming language.
 - Fundamental in some languages like perl and applications like grep or lex
 - Capable of describing the same thing as a NFA
 - The two are actually equivalent, so RE = NFA = DFA
 - We can define an algebra for regular expressions

Algebra for Languages

- Previously we discussed these operators:
 - Union
 - Concatenation
 - Kleene Star

Definition of a Regular Expression

- R is a regular expression if it is:
 - 1. **a** for some *a* in the alphabet Σ , standing for the language {a}
 - 2. ϵ , standing for the language $\{\epsilon\}$
 - 3. Ø, standing for the empty language
 - 4. R_1+R_2 where R_1 and R_2 are regular expressions, and + signifies union (sometimes | is used)
 - 5. R_1R_2 where R_1 and R_2 are regular expressions and this signifies concatenation
 - 6. R* where R is a regular expression and signifies closure
 - 7. (R) where R is a regular expression, then a parenthesized R is also a regular expression

This definition may seem circular, but 1-3 form the basis Precedence: Parentheses have the highest precedence, followed by *, concatenation, and then union.

RE Examples

- $L(001) = \{001\}$
- $L(0+10^*) = \{0, 1, 10, 100, 1000, 10000, ... \}$
- $L(0*10*) = \{1, 01, 10, 010, 0010, ...\}$ i.e. $\{w \mid w \text{ has exactly a single } 1\}$
- $L(\sum \sum)^* = \{w \mid w \text{ is a string of even length}\}$
- $L((0(0+1))^*) = \{ \epsilon, 00, 01, 0000, 0001, 0100, 0101, \ldots \}$
- $L((0+\epsilon)(1+\epsilon)) = \{\epsilon, 0, 1, 01\}$
- $L(1\emptyset) = \emptyset$; concatenating the empty set to any set yields the empty set.
- $R\varepsilon = R$
- $R+\emptyset = R$
- Note that $R+\varepsilon$ may or may not equal R (we are adding ε to the language)
- Note that RØ will only equal R if R itself is the empty set.

Equivalence of FA and RE

- Finite Automata and Regular Expressions are equivalent. To show this:
 - Show we can express a DFA as an equivalent RE
 - Show we can express a RE as an ε-NFA. Since the ε-NFA can be converted to a DFA and the DFA to an NFA, then RE will be equivalent to all the automata we have described.

Turning a DFA into a RE

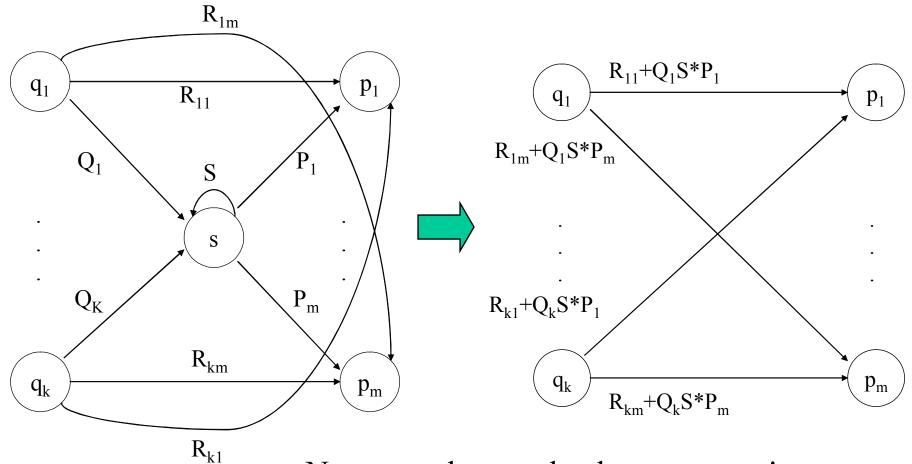
- Theorem: If L=L(A) for some DFA A, then there is a regular expression R such that L=L(R).
- Proof
 - Construct GNFA, Generalized NFA
 - We'll skip this in class, but see the textbook for details
 - State Elimination
 - We'll see how to do this next, easier than inductive construction, there is no exponential number of expressions

DFA to RE: State Elimination

- Eliminates states of the automaton and replaces the edges with regular expressions that includes the behavior of the eliminated states.
- Eventually we get down to the situation with just a start and final node, and this is easy to express as a RE

State Elimination

- Consider the figure below, which shows a generic state s about to be eliminated. The labels on all edges are regular expressions.
- To remove s, we must make labels from each q_i to p_1 up to p_m that include the paths we could have made through s.



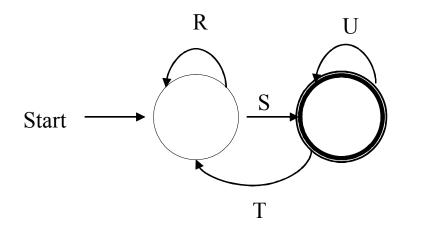
Note: q and p may be the same state!

DFA to RE via State Elimination (1)

- 1. Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
 - The result will be a one or two state automaton with a start state and accepting state.

DFA to RE State Elimination (2)

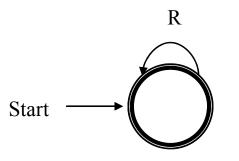
2. If the two states are different, we will have an automaton that looks like the following:



We can describe this automaton as: (R+SU*T)*SU*

DFA to RE State Elimination (3)

3. If the start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the start state. This leaves the following:



We can describe this automaton as simply R*.

DFA to RE State Elimination (4)

4. If there are n accepting states, we must repeat the above steps for each accepting states to get n different regular expressions, $R_1, R_2, \ldots R_n$. For each repeat we turn any other accepting state to non-accepting. The desired regular expression for the automaton is then the union of each of the n regular expressions: $R_1 \cup R_2 \dots \cup R_N$

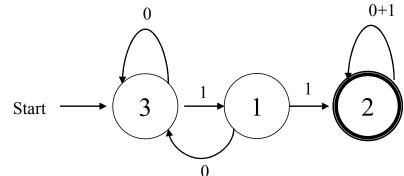
DFA→RE Example

• Convert the following to a RE

Start

First convert the edges
 to RE's:

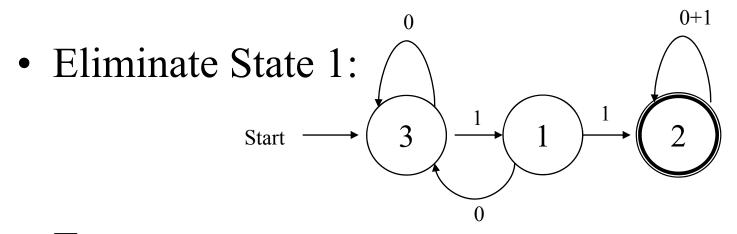
3

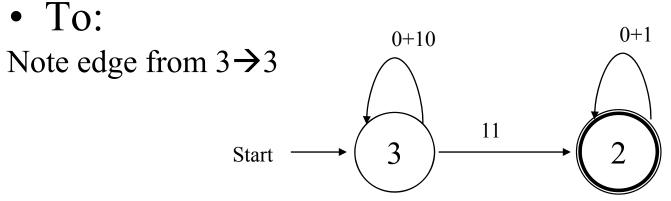


1

2

DFA \rightarrow RE Example (2)

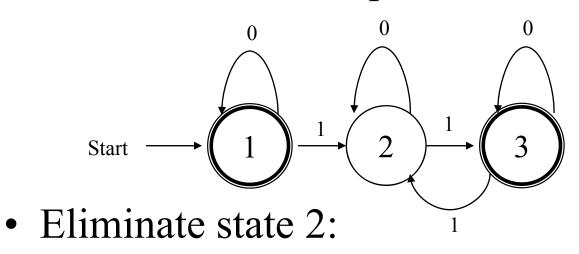


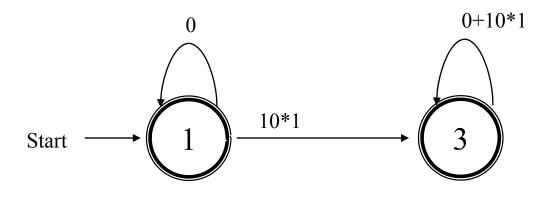


Answer: (0+10)*11(0+1)*

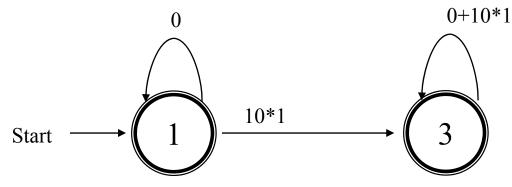
Second Example

• Automata that accepts even number of 1's

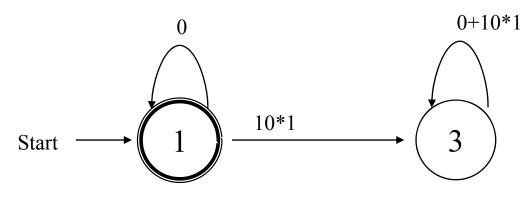




Second Example (2)

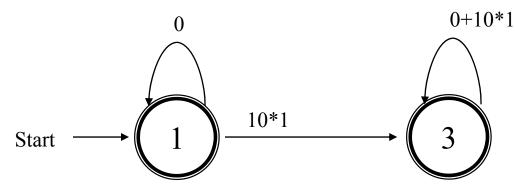


• Two accepting states, turn off state 3 first

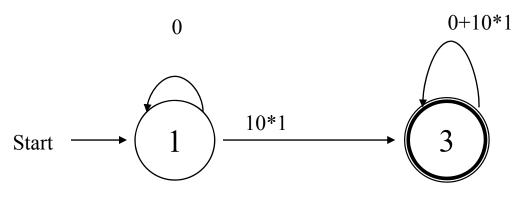


This is just 0*; can ignore going to state 3 since we would "die"

Second Example (3)



• Turn off state 1 second:



This is just 0*10*1(0+10*1)*

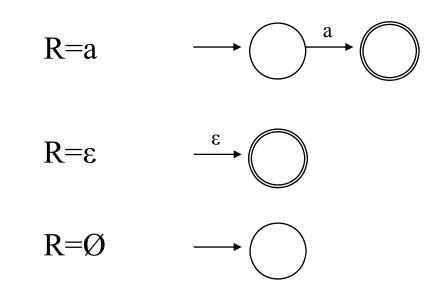
Combine from previous slide to get $0^* + 0^*10^*1(0+10^*1)^*$

Converting a RE to an Automata

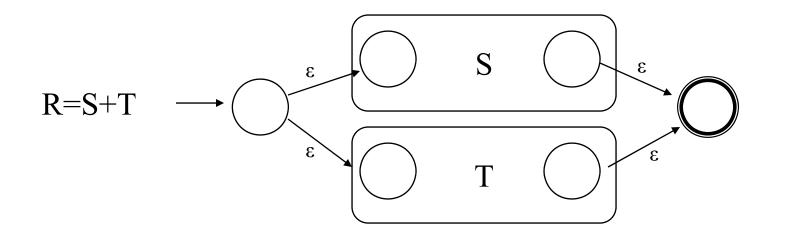
- We have shown we can convert an automata to a RE. To show equivalence we must also go the other direction, convert a RE to an automaton.
- We can do this easiest by converting a RE to an ϵ -NFA
 - Inductive construction
 - Start with a simple basis, use that to build more complex parts of the NFA

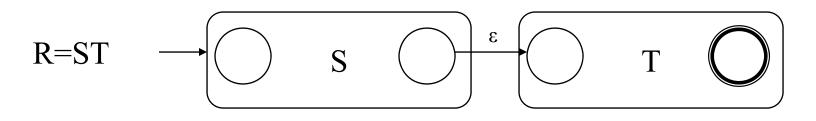
RE to ε-NFA

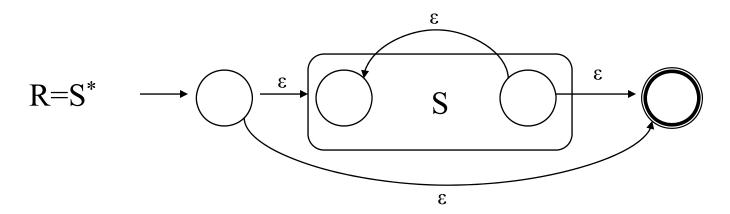
• Basis:



Next slide: More complex RE's





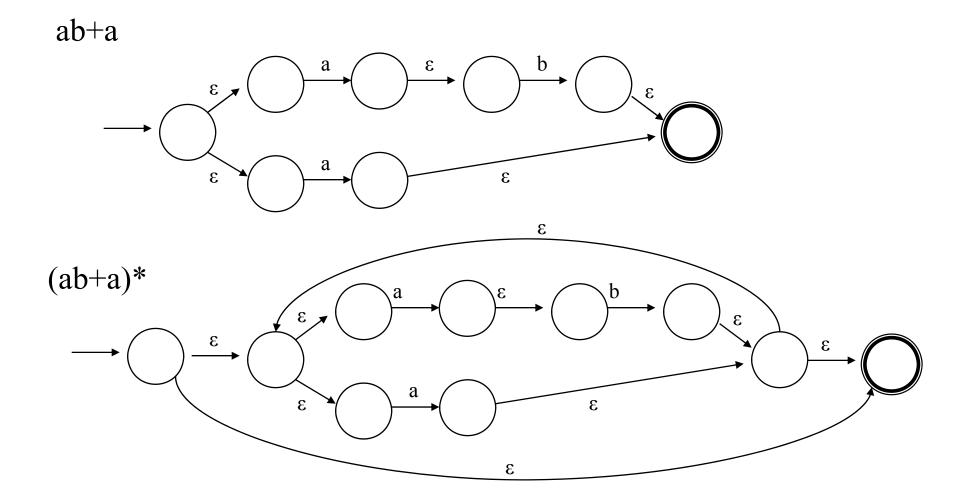


RE to ε -NFA Example

- Convert $R = (ab+a)^*$ to an NFA
 - We proceed in stages, starting from simple elements and working our way up

a
$$\rightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc$$

b $\rightarrow \bigcirc \stackrel{b}{\longrightarrow} \bigcirc$
ab $\rightarrow \bigcirc \stackrel{a}{\longrightarrow} \bigcirc \stackrel{\epsilon}{\longrightarrow} \bigcirc \stackrel{b}{\longrightarrow} \bigcirc$



What have we shown?

- Regular expressions and finite state automata are really two different ways of expressing the same thing.
- In some cases you may find it easier to start with one and move to the other
 - E.g., the language of an even number of one's is typically easier to design as a NFA or DFA and then convert it to a RE

Algebraic Laws for RE's

- Just like we have an algebra for arithmetic, we also have an algebra for regular expressions.
 - While there are some similarities to arithmetic algebra, it is a bit different with regular expressions.

Algebra for RE's

- Commutative law for union: -L + M = M + L
- Associative law for union:

-(L + M) + N = L + (M + N)

• Associative law for concatenation:

-(LM)N = L(MN)

• Note that there is no commutative law for concatenation, i.e. LM ≠ ML

Algebra for RE's (2)

• The identity for union is:

 $- L + \emptyset = \emptyset + L = L$

• The identity for concatenation is:

 $- L\epsilon = \epsilon L = L$

• The annihilator for concatenation is:

- ØL = LØ = Ø

• Left distributive law:

- L(M+N) = LM + LN

- Right distributive law:
 - (M+N)L = LM + LN
- Idempotent law:

-L+L=L

Laws Involving Closure

- (L*)* = L*
 i.e. closing an already closed expression does not change the language
- $Q * = \varepsilon$
- $e^* = e$
- $\Gamma_+ = \Gamma\Gamma* = \Gamma*\Gamma$

– more of a definition than a law

- $\Gamma * = \Gamma_+ + \varepsilon$
- L? = ε + L

– more of a definition than a law

Checking a Law

Suppose we are told that the law
 (R + S)* = (R*S*)*

holds for regular expressions. How would we check that this claim is true?

- 1. Convert the RE's to DFA's and minimize the DFA's to see if they are equivalent (we'll cover minimization later)
- 2. We can use the "concretization" test:
 - Think of R and S as if they were single symbols, rather than placeholders for languages, i.e., $R = \{0\}$ and $S = \{1\}$.
 - Test whether the law holds under the concrete symbols. If so, then this is a true law, and if not then the law is false.

Concretization Test

For our example
 (R + S)* = (R*S*)*

We can substitute 0 for R and 1 for S.

The left side is clearly any sequence of 0's and 1's. The right side also denotes any string of 0's and 1's, since 0 and 1 are each in L(0*1*).

Concretization Test

- NOTE: extensions of the test beyond regular expressions may fail.
- Consider the "law" $L \cap M \cap N = L \cap M$.
- This is clearly false
 - Let $L=M=\{a\}$ and $N=\emptyset$. $\{a\} \neq \emptyset$.
 - But if $L=\{a\}$ and $M=\{b\}$ and $N=\{c\}$ then
 - $L \cap M$ does equal $L \cap M \cap N$ which is empty.
 - The test would say this law is true, but it is not because we are applying the test beyond regular expressions.
- We'll see soon various languages that do not have corresponding regular expressions.